Regional Simulation Model

Model Testing and Analysis Wasantha Lal

Office of Modeling 1

stwmd.gov

- I. Numerical error analysis (WRR Lal, 2000)
- II. Cell size, time step, run time analysis (ASCE HY Lai, 1998)
- III. Analytical solutions used for calibration and verification (ASCE HY 127(7) Lal, 2001, 2005)
- IV. Development of tools for calibration and parameter analysis (SVD, LSQ, optimization) (PEST manual, Lal, 1998)
- V. Early test beds (JHE Lal, 1998c)

L Numerical error analysis

- Select proper time step and cell size so that the solution is useful for the intended purpose
- Provides a way to calculate model uncertainty due to numerical error
- Used in sizing model applications

Office of Modeling 3

No numerical model is perfect

- Models approximate complicated systems
- Models leave out many components depending on discretization, design, and use

Office of Modeling 4

Office of Modeling 5

Numerical error and stability analysis

- Fourier decomposition and Von Neumann analysis
 - Models filter out Fourier components due to numerical diffusion
 - Models add Fourier components due to numerical dispersion

Office of Modeling 6

Numerical errors are due to:

- (A) Representation of continuous functions using discrete methods
- (B) Insufficient space and time discretizations
- (C) Computational errors due to propagation of truncation error

(Lal, WRR May 2000)

Office of Modeling 7

Numerical models have performance curves

- No free lunch; for the same mesh, accurate results require small Δt and long run times
- To see more spatial details, use small Δx and pay a very high price
- Optimal discretization is based on benefitcost analysis

Office of Modeling 8

II. Model Performance

Lal, 1998, ASCE HY 124(4)

Office of Modeling 9

stwmd.gov

Estimate run time as (Lal, 1998 ASCE HY 124(4))

$$t_r = rac{c_1 T K A k^4}{\psi \phi^2}$$

$$t_r = c_1 \frac{T}{\beta} \frac{(NM)^2 K}{L_x L_y} = \frac{c_1 T K A k^4}{\beta \phi^4}$$

fuoitiesiteracib to level ent eruceem of discretization?

Office of Modeling 11

Dimensionless discretization

RSM 2005 (בו) Errors representing continuous functions using discrete values

$$\phi = 0.5 \sqrt{\epsilon_d}$$
 or $\epsilon_d = 4.0 \ \phi^2$ for 1-D

$$\phi = 0.35 \sqrt{\epsilon_d}$$
 or $\epsilon_d = 7.8 \ \phi^2$ for 2-D

 $\phi = k\Delta x =$ dimensionless spatial discretization.

 $\psi = f\Delta t = {\rm dimensionless\ time\ step}$

 $k = \frac{2\pi}{\lambda}$ = wave number

 $f=rac{2\pi}{T}={
m frequency}$

 $\lambda = \text{wave length}.$

T =wave period.

 $\epsilon_d = \text{discretization error}, \%.$

cotiestiereth emit but eerge ineititued (E)

$$f = Kk^2$$
 for 1-D

$$f = Kk^2$$
 for 1-D
$$f = 2Kk^2$$
 for 2-D

For overland flow in South Florida, $K = \frac{h^{\frac{5}{3}}}{n_b \sqrt{S}}$.

or
$$K = 250 \ m^2/s$$

For groundwater flow in South Florida, $K=2\ m^2/s$, $s_c=0.25$.

Matching of Resolutions

Office of Modeling 15

(C) Computational errors

$$\epsilon_T$$
 (expl/impl 1-D) $pprox rac{fT\phi^2}{2}(\mp eta - rac{1}{6})$

$$\epsilon_T$$
 (semi-impl 1-D) $\approx fT \left[\frac{\phi^2}{12} - \frac{\phi^4}{12} (\beta^2 - \frac{1}{30}) \right]$

$$\epsilon_T$$
 (expl/impl 2-D) $\approx fT\phi^2(\pm\beta-\frac{1}{12})$

$$\epsilon_T$$
 (semi-impl 2-D) $\approx fT \left[-\frac{\phi^2}{6} + \frac{2\phi^4}{3} (\beta^2 + \frac{1}{120}) \right]$

 $\phi=k\Delta x=$ dimensionless spatial discretization.

$$\beta = \frac{K\Delta t}{\Delta x^2} =$$
 dimensionaless time step.

$$K = \frac{h^{\frac{5}{3}}}{n_b \sqrt{S}}$$
 for overland flow.

 $\epsilon_T=$ error as a fraction of the amplitude.

RSM²⁰⁰⁵ III. Analytical solutions used for calibration and verification

Critical Guiding Principles:

- Understanding and controlling dimensional parameter groups
- Understanding the range of validity
- Analytical solution is the best tool to test and verify the numerical method
- Analytical solutions can be used to determine parameters

RSM 2005 Example where analytical solution is used to determine validity of the Diffusion Flow Assumption

TS Sqrt(g/d) > 30

T = wave period

S = slope

d = depth

(Ponce, 1978)

Office of Modeling 18

Analytical solutions for testing solutions

Office of Modeling 19

sfirmd.gov

Analytical solutions used to verify RSM results

Figure 10: Comparison of the $-\hat{\lambda}_1$ versus P_m and $-\hat{\lambda}_2$ versus P_m curves obtained by using the analytical method and the HSE model. $P_d = 0.3737$, $P_r = 9.78 \times 10^{-5}$, $P_b = 2.49 \times 10^{-2}$

Lal, 2000, ASCE HY 127(7)

Office of Modeling 20

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

RSM²⁰⁰⁵Analytical solutions used to understand the physical processes

Vertical leakance

Parameter describing vertical leakiness of the confined aquifer η : aquifer is confined if $\eta < 0.05$ and extremely leaky confined if $\eta > 100$

$$\eta = \frac{1}{s_c f} \frac{k_v}{\delta_v}$$

Sediment resistance

Dimensionless sediment conductance parameter σ : if $\sigma < 0.073$ there is full cutoff; if $\sigma > 19.5$ the sediment is fully pervious. Values described here are at a 5% detection level

$$\sigma = p \frac{k_s}{\delta_s} \sqrt{\frac{2}{f s_c T}}$$

Canal-aquifer storage parameter

Dimensionless stream-aquifer interaction parameter χ : with no sediments, if $\chi > 27.5$, there is cutoff and therefore no interaction. If $\chi < 0.1$, there is full interaction and the canal and the aquifer move in unison. Values described here are at a 5% detection level.

$$\chi = B\sqrt{\frac{f}{Ts_c}}$$

Lal (Submitted to WRR)

RSM2005 Analytical methods used to determine parameters

Table 4: Table of dimensionless parameters

Domain	Overall	Overall	Overall	Zone NTS1,NTS10	
Method	LSQ	Cross corr	Manual	LSQ	
η	0.635	1.040	0.182	3.058	
k_0	2.473×10^{-4}	2.831 ×10 ⁻⁴	2.636×10^{-4}	1.866×10^{-4}	
σ (ampl)	2.503	2.604	2.339	3.749	
σ (phase)	3.527	4.065	7.764	-	
α_{ε} (ampl)	0.629	0.617	0.650	0.653	
ξ (ampl)	0.254	0.254	0.254	0.254	
χ (ampl)	0.405	0.412	0.397	0.501	
χ (phase)	0.688	0.844	0.452	1.332	
θ	0.690	0.690	0.690	0.690	

Explanations

(ampl) = Values computed using ξ or amplitude ratio of head and discharge

(phase) = Values computed using θ or the phase lag between head and discharge

Analytical methods used to determine parameters

Table 5: Table of primitive variable computed using various methods

Domain		Overall	Overall	Zone NTS1, NTS10
Method		Cross corr	Manual	LSQ
1. Aquifer diffusivity T/s_c , (m^2/s)		227	261	522
2. Ampl based diffusivity T/s_c , (m^2/s)		92	204	132
(assuming non-leaky)				
3. Aquifer $T s_c$ (ampl), (m^2/s)	0.0742	0.0716	0.0768	0.0484
4. Aquifer $T s_c$ (phas), (m^2/s)	0.0257	0.0170	0.0595	0.0068
5. Transmissivity T ,(ampl) m^2/s	4.69	4.03	4.48	5.03
6. Transmissivity T ,(phas) m^2/s	2.76	1.96	3.94	1.89
7. Storage coeff s _c	0.0158	0.0177	0.0171	0.0096
8. Coeff of leakage (sediment) k_s/δ_s (day ⁻¹)	13.72	14.03	13.06	16.62
9. Coeff of leakage (aquifer) k_v/δ_v (day^{-1})	0.0315	0.0581	0.0098	0.0925

lV. Tools for calibration and parameter analysis (SYD, LSQ, Optimization)

- Sensitivity analysis
- Single Value Decomposition (SVD) is useful in determining parameter redundancies, groupings etc.; over parameterization (under determination) is a common problem
- SVD useful in determining the actual parameter dimensionality

Tools for calibration and parameter analysis (SYD, LSQ, Optimization)

- SVD is useful in determining parameter covariance and correlation so that parameters can be grouped
- SVD and LSQ (Gauss Newton) methods are useful in parameter calibration
- Optimization is a way to calibrate parameters

HSE early test beds

- Axisymmetric problems
- Analytical solutions for integrated streamaquifer problems in dimensionless terms
- Test problems from Viessman (1977) and Wang (1982) etc.
- Compare analytical and RSM estimates of error

Office of Modeling 27

Office of Modeling 28

Office of Modeling 29

Office of Modeling 30

Error table

Test	No.	No.	CPU	No.	Δx	Δt	hend	π/φ	β	3
	elem.	nodes	(s)	iter.	(m)	(s)	(m)			%
1	116	69	2.4	18	14939	51840	0.44877	2.15	0.0164	1.09
2	116	69	8.8	12	14939	10368	0.44840	2.15	0.0033	1.03
3	116	69	16.4	11	14939	5184	0.44840	2.15	0.0016	1.02
4*	238	135	10.3	1	10429	5184	0.43921			0.50
5*	238	135	15.7	1	10429	10368	0.43908			0.50
6*	238	135	27.7	1	10429	5184	0.43901		0.50	0.49
7	376	209	6.0	40	8298	207360	0.44500	3.88	0.2121	0.48
8	376	209	25.1	19	8298	20736	0.44456	3.88	0.0212	0.40
9	376	209	43.6	17	8298	10368	0.44444	3.88	0.0106	0.38
10	376	209	78.8	13	8298	5184	0.44438	3.88	0.0053	0.37
11	1536	809	60.1	104	4105	518400	0.45404	7.84	2.1660	1.96
12	1536	809	75.3	78	4105	207360	0.44494	7.84	0.8660	0.48
13	1536	809	98.3	67	4105	103680	0.44501	7.84	0.4332	0.48
14	1536	809	258.0	35	4105	20736	0.44388	7.84	0.0866	0.29
15	1536	809	436.0	27	4105	10368	0.44374	7.84	0.0433	0.27

Office of Modeling 31

Benchmark #11

Office of Modeling 32

From Viessman and Knapp (1972)

UNET Model Comparison

(USACE 1998)

Office of Modeling 33

Comparison between HSE and UNET model

(USACE 1998)

Office of Modeling 34

V. Early applications

Ken Tarboton will cover these early applications

- Kissimmee Basin
- Everglades National Park
- L-8 Drainage Basin
- Loxahatchee National Wildlife Reserve (WCA-1)
- Southwest Florida
- North Palm Beach County Pre-Drainage
- Southern Everglades
- South Florida (SFRSM)